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 SURVIVAL OF ADHERING CORTICAL NEURONS ON
POLYETHYLENIMINE MICROPATTERNS

T. G. Ruardij, M. H. Goedbloed, W. L. C. Rutten
Faculty of Electrical Engineering, Department of Biomedical Engineering, University of Twente, P.O. Box 217, 7500 AE

Enschede, The Netherlands

Abstract The influence of neuron-adhesive pattern
geometry on long-term survival of cortical neural tissue
(rat brain) was studied over a time period of 15 days.
Microwells (depth 0.5 µm) with diameters of 25, 50, 100
and 150 µm and inter-microwell distances of 15, 30, 60
and 90 µm, were etched in a neuron-repellent
fluorocarbon (FC)-layer and coated with neuron-adhesive
polyethylenimine (PEI). Results showed that the survival
of neural tissue was geometry- independent after 1, 4 and
8 days but was favored on 150 µm wells after 15 days.
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I. INTRODUCTION

In neuroscience community, a growing interest is observed
in the development of neuro-electronic devices that can
survive in a physiological surrounding over prolonged
periods of time. The development of a cultured neuron probe
[1] is considered to be an important gateway towards
improved integration of neural tissue with electronic devices,
which is an advantage for effective and highly selective
stimulation of nerve fibers and corresponding muscle
functions. An essential part of a cultured probe is an efficient
contact between electrode and neural tissue for sufficient
electrical signal transfer [2]. Therefore we need to improve
the neuron-adhesive character of electrodes and avoid neural
adhesion around electrodes over longer periods of time.
Photolithography [3-5] facilitates the preparation of chemical
patterns of neuron-adhesive substances on micro-electrode
devices [6] and is a promising tool towards accurate
positioning of neurons on top of micro-electrodes.

The number of possible pattern geometries that can be
prepared with photolithography methods are in fact endless.
In neuroscience, typical examples of pattern geometries that
have been investigated more frequently than others are
patterns with multiple parallel tracks of adhesive/non-
adhesive materials [7-9] and so-called grid patterns [3,10].
The choice for grid patterns is, amongst other reasons, driven
by the desire to 1) control the positioning of adhering neurons
onto specified locations on the surface and 2) maintain the
possibility to obtain a connected two-dimensional neural
network. Multi-electrode arrays (MEAs) are suitable
instruments to investigate bioelectrical activity within such a
network and are primarily used as tools to record electrical
signals [11,12] although simultaneous stimulation and
recording is a possible option [13]. Our group is interested in
the application of MEAs for selective stimulation of
sprouting axons developed by motor nerves.  The final goal is

an improved fine control of muscles. In vitro  cultured islands
of neurons on top of the MEAs are part of our strategy to
attract axonal sprouts from nerves onto micro-electrodes. The
miniaturization of MEAs into cultured probes with acceptable
sizes raise questions about the optimal dimensions of the in
vitro  cultured islands of neurons, suitable for long-term
adhesion and survival.

The aim of this paper is to study the adhesion and viability
of dissociated cortical neurons on stepwise miniaturized
chemical patterns over a time period of 15 days. Neurons
were patterned with a combination of neuron-adhesive
polyethylenimine (PEI) and a neuron-repellent fluorocarbon
(FC) layer.

II. MATERIALS AND  METHODS

Preparation procedure of chemical patterns with PEI and
Plasma-FC using photolithography

Glass plates (Glaverbel, Mol, Belgium) were initially spin-
coated with a layer of Polyimide (PI, Probimide 7510®, Arch
Chemicals N.V., Zwijndrecht, Belgium) which was diluted in
n-methyl pyrolidon (1:1 volume ratio). In a reactive ion
etching (RIE) system, glass plates were covered with a
Fluorocarbon (FC) layer using a low-energy CHF3 plasma.
Patterns with different geometries were etched in the FC-
layer using spinned photoresist as a protective layer for the
FC. CHF3 exposed photoresist was removed by ultrasonic
cleaning in acetone for 5 minutes. Positive photoresist was
spinned onto the patterned surfaces (4000 rpm, 20 seconds)
and the chromium UV-mask was accurately aligned (±1 µm)
with the visible topographical features of the pattern.
Photoresist inside the circular wells was exposed to UV-light,
developed and selectively removed (Developer OPD 4262,
Arch Chemicals N.V., Zwijndrecht, Belgium). Glass plates
were cut mechanically into 9 similar pieces (referred to as
culture samples). Each culture sample contained 4 areas with
different pattern geometries.

Culture samples were immersed in a PEI-solution (10
µg/ml) for a time period of 1 minute and subsequently
immersed in Milli-Q water for 1 minute. Remaining
photoresist with adsorbed PEI on top was selectively lifted-
off with a 1.0 NaOH solution in a time-span of 2 minutes
[14]. Removal of residual NaOH was done with a two-fold
rinsing procedure in Milli-Q water for 1 minute.

Geometrical characteristics

The 4 pattern areas on each culture sample consisted of
neuron-adhesive PEI-coated microwells, embedded in a
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neuron-repellent Plasma-FC layer. The distance between the
microwells was kept at a constant fraction of 0.6 times the
diameter D of the wells (see figure 2). The 4 patterns
contained well diameters D of 150, 100, 50, and 25 µm.
Consequently, this corresponded to separation distances of
90, 60, 30, and 15 µm between the wells.  A total of 4 culture
samples were tested.

Cortical neuron isolation and procedures:

Cerebral cortex from 1-day-old newborn rats was dissected
out under sterile circumstances and dissociated with 0.25 %
Trypsin/EDTA for 45 minutes in an incubator at 37 °C at 5 %
CO2 and subsequently treated with Soybean Trypsin Inhibitor
(STI, 1 mg/ml) and Desoxyribonuclease I (DNAse I, 1.1
unit/ml). Trypan blue stain (0.4 %) was used to discriminate
and count living neurons in a Bürker chamber, prior to the
sedimentation of the neurons onto the culture samples. The
plating density of living neurons was set at 2500
neurons/mm2. Neurons were allowed to adhere onto the
culture samples during a time period of 4 hours. The
assembly of the 4 pattern geometries on each culture sample
effectively reduced the amount of neural tissue required. In
addition, the possibility of exposing the 4 patterns to neurons
with unwanted variable adhesion ability (or viability) was
avoided.

Viability staining

Viable and non-viable neural tissue was evaluated with a
staining procedure using acridine orange (AO) and propidium
iodide (PPI) respectively. Stock solutions of acridine orange
(1000 µg/ml; Serva Feinbiochemica, Heidelberg, Germany)
and propidium iodide (40 µg/ml; Sigma Aldrich,
Zwijndrecht, The Netherlands) were prepared in 0.1 M
phosphate buffered saline (PBS). In a first run, tissue on
micropatterned surfaces was stained with PPI to evaluate the
presence of only non-viable tissue. Simultaneous staining of
viable and non-viable tissue with both AO and PPI was done
in a second run. In detail, each sample with adhering tissue
was rinsed twice with fresh PBS and then immersed into a
diluted PPI solution (5.0 µg/ml) for 5 minutes (first run). PPI
stained (non-viable) tissue was examined with epi-
fluorescence equipment mounted on an Nikon inverted
microscope Diaphot-TMD (Nikon, Japan). Photomicrographs
of fluorescent and phase contrast images were taken with a
Nikon-FE 35 mm camera, attached to the front camera port.
In the second run, the samples were immersed in a combined
AO (1.5 µg/ml)/PPI (5.0 µg/ml) solution for 5 minutes. The
450-490 nm excitation filter in combination with a 510 n m
dichroic mirror and 520 nm barrier filter permitted the
simultaneous observation of both viable (green) and non-
viable (red) tissue. Viability stains were done on day 1, 4, 8,
and 15 days.  The areas covered with red (non-viable) tissue
were determined and referred to as ANV(D,T). The
subsequent staining with acridine orange (AO) and propidium
iodide (PPI) resulted in images with red, green and yellow
areas. Assuming that yellow is the cumulative effect of non-

viable and viable cells overlapping each other, as was
observed before for islets of Langerhans [15], the surface
area where viable cells can be located is a summation of
green and yellow areas and is referred to as AV(D,T). A time-
and pattern-dependent viability factor V(D,T) was defined as
the ratio of the area covered with viable neurons AV(D,T)
with respect to the summation of areas covered with viable
tissue AV(D,T) and non-viable tissue ANV(D,T)
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Quantitative analysis

Photomicrographs of stained neural tissue were scanned,
stored as bitmap images, processed in Microsoft compatible
software (Corel PhotoPaint 7, Corel Corporation, Ontario,
Canada) until 1-bit images (black and white) were finally
obtained. The images were stored as 8-bit images. Black and
white corresponded to the empty background and the neural-
tissue-covered foreground respectively. The software
permitted the calculation of mean brightness values within 8-
bit images (histogram function) and was used to calculate the
total area of the surface covered with neural tissue (white:
brightness value 255).

III. RESULTS

Fig. 1 demonstrates the calculated viability factor V(D,T)
of neural tissue on 4 micropatterns over a time period of 15
days. The general observation was that the viability of
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Fig.1. The viability factor V(D,T) on 4 micropatterns with corresponding
well diameters D after T = 1, 4, 8 and 15 days. The mean ± SD over 4
images, collected from two tissue isolation experiments, is presented.

neural tissue decreased within this time-span and is rather
insensitive to the underlying micropatterns after 1, 4, and 8
days. However significant differences in favor of the pattern
with 150 µm wells became apparent after 15 days.

Fig. 2 presents phase contrast and fluorescence images of
neural tissue after 15 days on 150 µm wells. Neural tissue
was preferentially observed on the PEI-coated wells. Non-
viable tissue was present after 15 days as was proven by the
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red color after staining with propidium iodide (see Fig.2,
Top). The images were predominantly red and yellow after

Fig.2. Fluorescent image (Top) and phase contrast image (Bottom) of AO/PI-
stained neural tissue after 15 days on a pattern with 150 µm microwells.
Scaling bars represent 100 µm.

simultaneous staining with propidium iodide and acridine
orange (Fig.2, Bottom). The red color caused by propidium
iodide staining was replaced by a yellow color and especially
at locations where aggregates of neurons were observed.
Only single isolated neurons kept their red color after
simultaneous staining. Areas with a green color were rarely
observed.

IV. DISCUSSION

Survival of tissue was relatively independent of pattern
geometry in the first 8 days but favored the 150 µm wells
after 15 days. This is explained by a more frequent
detachment of aggregates from the smaller microwells. Since
living tissue could primarily be traced as part of an aggregate,
the enhanced detachment of aggregates from the patterns
with smaller microwells effectively removed most living
tissue. The non-adhesive FC, underlying the aggregates,
accounts for the enhanced detachment on small wells as
opposed to the described events on 150 µm wells where
aggregates adhere on PEI only. A general observation on all

patterns is a decreasing viability of the neural tissue over 15
days. Authors have occasionally reported more viable

Fig.3. Fluorescent image (Top) and phase contrast image (Bottom) of AO/PI-
stained neural tissue after 15 days on a micro-printed pattern with 24 µm
wide multiple parallel tracks. Heart-to-heart distance between tracks is 160
µm. Scaling bars represent 100 µm.

patterning systems with hippocampal neurons on micro-
stamped poly-lysine grid patterns [16]. Although results are
always difficult to compare due to differences in the
experimental set-up, it could be hypothesized that the
inherent connectivity and/or adhesion of microprinted grid
patterns stabilizes the network and renders to be more
suitable for long-term survival. Therefore microcontact
printed patterns using PEI as the printing substance and the
FC-layer as the background material (Fig.3) were also
prepared and tested for their survival.  Indeed, it was
observed that calculated viability factors of double-stained
patterns with multiple parallel tracks were around 0.8 and
well above the numbers found for microwells with different
dimensions (see Fig.1).

V. CONCLUSION

The conclusion is that moderate instead of advanced
miniaturization of a neural pattern with isolated islands of
neurons will slow down the necrosis and detachment of
neural tissue. The underlying mechanisms probably involve
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the secretion and diffusion of endogenous proteins, which
depend upon the concentration gradients and distances
between the neurons. Furthermore, necrosis of neural tissue is
likely to be triggered by a hampered diffusion of medium
nutrients and endogenous proteins towards the center of
neuron aggregates [17]. Apparently, the geometrical
characteristics of our most miniaturized patterns (25 µm
wells) are unsuitable for diffusion-assisted long-term
adhesion and survival of neural tissue. This is unfortunate
because miniaturization towards single-cell size dimensions
would allow a more precise positioning of cells onto small
pre-defined areas [4] such as microelectrodes [18,19].
Survival of cortical neurons is favored on microwells with a
diameter of 150 µm. Microcontact printing of PEI onto a
Fluorocarbon layer appears to be a promising method to
improve the long-term survival of adhering neural tissue
islands.
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